Identification of laccases involved in lignin polymerization and strategies to deregulate their expression in order to modify lignin content in Arabidopsis and poplar

نویسندگان

  • Jouanin Lise
  • Berthet Serge
  • Mazel Julien
  • Demont-Caulet Nathalie
  • Ayangma Brice
  • Le-Bris Philippe
  • Baratiny Davy
  • Leplé Jean Charles
  • Lapierre Catherine
چکیده

Lignins have a major impact on the agro-industrial uses of plants. Until now, most of the strategies considered for lignin reduction have targeted the monolignol pathway since the genes involved in these metabolic steps have been identified in many plants. Less is known about the other steps and in particular on lignin polymerization in the cell wall. While it is established that peroxidases are involved in the polymerization of lignin precursors, it is not yet clear whether laccases (EC 1.10.3.2) participate in constitutive lignification. In order to address this issue, laccase genes (AtLAC4 and AtLAC17) that are highly expressed in Arabidopsis stems were studied. AtLAC17 was specifically expressed in the interfascicular fibers while AtLAC4 was expressed in vascular bundles and interfascicular fibers. Arabidopsis T-DNA insertion mutants were selected and characterized. Two double mutants were obtained by crossing the AtLAC17 (lac17) mutant with two AtLAC4 mutants (lac4-1 and lac4-2). The single and double mutants displayed normal growth, except the lac4-2 lac17 mutant that sometimes had a semi-dwarf phenotype and collapsed vessels. While the single mutants had moderately reduced lignin levels, the stems of lac4-1 lac17 and lac42 lac17 had lignin content reduced by 20% and 40%, respectively. This lower lignin level improved their saccharification yield. Thioacidolysis revealed that disrupting AtLAC17 mainly affected the deposition of G lignin units in the interfascicular fibers and that complementation of lac17 with AtLAC17 restored the normal lignin profile. This study provides evidence that both AtLAC4 and AtLAC17 contribute to the constitutive lignification of Arabidopsis stems and that AtLAC17 is involved in the deposition of G lignin units in fibers, suggesting a role in early lignification (Berthet et al, in press). The double mutants cannot be obtained for species that are propagated vegetatively such as poplar. In order to produce plants with lower laccase activity and reduced lignin content, we therefore used a miRNA strategy. The overexpression of two miRNA (miR397 and miR408) targeting several laccase genes was tested in different plants including Arabidopsis and poplar. These miRNAs were expressed constitutively under the control of the CaMV 35S promoter or of lignin-specific promoters such as CAD and C4L in transgenic Arabidopsis and poplar. Results obtained using of this miRNA strategy in Arabidopsis and preliminary results for poplar will be presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa.

Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-mi...

متن کامل

Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant.

Lignin is a complex phenolic heteropolymer deposited in the secondarily thickened walls of specialized plant cells to provide strength for plants to stand upright and hydrophobicity to conducting cells for long-distance water transport. Although essential for plant growth and development, lignin is the major plant cell-wall component responsible for biomass recalcitrance to industrial processin...

متن کامل

Determination of lignin-modifying enzymes (LMEs) in Hyphodermella species using biochemical and molecular techniques

White-rot basidiomycetes are one of the most important lignolytic microorganisms. These fungi have been reported to secrete three main classes of lignin degrading enzymes: lignin peroxidases (LiPs), manganese peroxidases (MnPs) and laccases. In this study, for the first time the lignin degrading capability of two plant pathogens i.e. Hyphodermella rosae and H. corrugata was evaluated using both...

متن کامل

Laccases direct lignification in the discrete secondary cell wall domains of protoxylem.

Plants precisely control lignin deposition in spiral or annular secondary cell wall domains during protoxylem tracheary element (TE) development. Because protoxylem TEs function to transport water within rapidly elongating tissues, it is important that lignin deposition is restricted to the secondary cell walls in order to preserve the plasticity of adjacent primary wall domains. The Arabidopsi...

متن کامل

Chemical Pulping Advantages of Zip‐lignin Hybrid Poplar

Hybrid poplar genetically engineered to possess chemically labile ester linkages in its lignin backbone (zip-lignin hybrid poplar) was examined to determine if the strategic lignin modifications would enhance chemical pulping efficiencies. Kraft pulping of zip-lignin and wild-type hybrid poplar was performed in lab-scale reactors under conditions of varying severity by altering time, temperatur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011